Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/3551
Título : Buckling and free vibration of laminated beams with arbitrary boundary conditions using a refined HSDT
Autor : Canales, F. G.
Mantari, J. L.
Palabras clave : Beam;Composite;Vibration;Buckling;Analytical
Fecha de publicación : jun-2016
Editorial : Elsevier Ltd
URI Relacionado: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975865186&doi=10.1016%2fj.compositesb.2016.06.024&partnerID=40&md5=083e86cd556f16a2388d57e3565c4b5a
Resumen : This paper presents an analytical solution for the buckling and free vibration analysis of laminated beams by using a generalized higher order shear deformation theory (HSDT) which includes the thickness stretching effect. Further development of HSDTs for beams can be done just by modifying the shear strain shape functions. The eigenvalue equation is derived by employing the Rayleigh quotient, using a Ritz solution to approximate the displacement field and Lagrange multipliers to consider the boundary conditions. Ritz solution with hybrid series is used to improve the accuracy of the results. Convergence of the results is analyzed. For validation, numerical results of the present theory are compared with other theories and the 3D FEM solutions. Nondimensional frequencies and critical buckling loads are obtained for a variety of stacking sequences.
URI : http://hdl.handle.net/20.500.14076/3551
ISSN : 13598368
Correo electrónico : [email protected]
[email protected]
Derechos: info:eu-repo/semantics/restrictedAccess
Aparece en las colecciones: Instituto General de Investigación (IGI)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Buckling and free vibration of laminated beams with arbitrary boundary conditions using a refined HSDT.pdf310,11 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI